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Abstract

Computational models are powerful tools that can enhance the understanding

of scientific phenomena. The enterprise of modeling is most productive when the

reasons underlying the adequacy of a model, and possibly its superiority to other

models, are understood. This chapter begins with an overview of the main criteria

that must be considered in model evaluation and selection, in particular explaining

why generalizability is the preferred criterion for model selection. This is followed

by a review of measures of generalizability. The final section demonstrates the use

of five versatile and easy-to-use selection methods for choosing between two

mathematical models of protein folding.
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I. Update

Advancement in the field of model evaluation tends to be gradual. This chapter

was written sufficiently recently that there have been no developments that would

qualify what was written. In place of such an update, we would like to make

modelers aware of a growing field that could be of interest in their pursuit of

distinguishing computational models. Statistical model selection methods such as

Akaike information criterion (AIC) and Bayesian model selection (BMS) are used

to compare models after data are collected in an experiment. Why not use knowl-

edge of these models and the experimental setting in which they are compared to

design better experiments with which to discriminate them? Design optimization is

a burgeoning field that has the potential to accelerate scientific discovery. Recent

advances in Bayesian statistics now make it possible to design experiments that are

optimized along various dimensions to distinguish competing computational mod-

els. In brief, through a sophisticated search of the design space of the experiment

and the parameter spaces of the models, the method identifies the designs that are

most likely to discriminate the models if the experiment were conducted. Interested

reader should consult the following papers: Muller et al. (2004) and Myung and

Pitt (2009).

Hints and Tips

(1) A good fit is a necessary, but not a sufficient, condition for judging the

adequacy of a model.

(2) When comparing models, one should avoid choosing an unnecessarily

complex model that overfits, and instead, should try to identify a model that is

sufficiently complex, but not too complex, to capture the regularity in the data.

(3) Model comparison should be based not upon goodness of fit (GOF), which

refers to how well a model fits a particular pattern of observed data, but upon

generalizability, which refers to how well a model fits not only the observed data at

hand but also new, as yet unseen, data samples from the same process that

generated the observed data.

(4) If models being compared differ significantly in number of parameters and

also the sample size is relatively large, use AIC, AICc, or Bayesian information

criterion (BIC).

(5) If the conditions in (4) are not met or when the models have the same

number of parameters, start by using CV or accumulative prediction error

(APE). Their ease of application makes them a worthwhile first step. Only if they

do not provide the desired clarity regarding model choice should BMS or stochas-

tic complexity (SC) be used.

(6) Keep the outcomes of model comparison analyses in perspective. They are

only one statistical source of evidence in model evaluation.
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II. Introduction

How does one evaluate the quality of a computational model of enzyme kinet-

ics? The answer to this question is important and complicated. It is important

because mathematics makes it possible to formalize the reaction, providing a

precise description of how the factors affecting it interact. Study of the model

can lead to significant understanding of the reaction, so much so that the model

can serve not merely as a description of the reaction, but can contribute to

explaining its role in metabolism. Model evaluation is complicated because it

involves subjectivity, which can be difficult to quantify.

This chapter begins with a conceptual overview of some of the central issues in

model evaluation and selection, with an emphasis on those pertinent to the

comparison of two or more models. This is followed by a selective survey of

model comparison methods and then an application example that demonstrates

the use of five simple yet informative model comparison methods.

Criteria on which models are evaluated can be grouped into those that are

difficult to quantify and those for which it is easier to do so (Jacobs and Grainger,

1994). Criteria such as explanatory adequacy (whether the theoretical account of

the model helps make sense of observed data) and interpretability (whether the

components of the model, especially its parameters, are understandable and are

linked to known processes) rely on the knowledge, experience, and preferences of

the modeler. Although the use of these criteria may favor one model over another,

they do not lend themselves to quantification because of their complexity and

qualitative properties. Model evaluation criteria for which there are quantitative

measures include descriptive adequacy (whether the model fits the observed data),

complexity or simplicity (whether the model’s description of observed data is

achieved in the simplest possible manner), and generalizability (whether the

model is a good predictor of future observations). Although each criterion identi-

fies a property of a model that can be evaluated on its own, in practice they are

rarely independent of one another. Consideration of all three simultaneously is

necessary to assess fully the adequacy of a model.

III. Conceptual Overview of Model Evaluation and Comparison

Before discussing the three quantitative criteria in more depth, we highlight

some of the key challenges of modeling. Models are mathematical representations

of the phenomenon under study. They are meant to capture patterns or regularities

in empirical data by altering parameters that correspond to variables that are

thought to affect the phenomenon. Model specification is difficult because our

knowledge about the phenomenon being modeled is rarely complete. That is, the

empirical data obtained from studying the phenomenon are limited, providing

only partial information (i.e., snapshots) about its properties and the variables that
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influence it. With limited information, it is next to impossible to construct the

‘‘true’’ model. Furthermore, with only partial information, it is likely that multiple

models are plausible; more than one model can provide a good account of the data.

Given this situation, it is most productive to viewmodels as approximations, which

one seeks to improve through repeated testing.

Another reason models can be only approximations is that data are inherently

noisy. There is always measurement error, however small, and there may also be

other sources of uncontrolled variation introduced during the data collection

process that amplifies this error. Error clouds the regularity in the data, increasing

the difficulty of modeling. Because noise cannot be removed from the data, the

researcher must be careful that the model is capturing the meaningful trends in the

data and not error variation. As explained later, one reason why generalizability

has become the preferred method of model comparison is how it tackles the

problem of noise in data.

The descriptive adequacy of amodel is assessed bymeasuring howwell it fits a set

of empirical data. A number of GOFmeasures are in use, including sum of squared

errors (SSE), percent variance accounted for, and maximum likelihood (ML; e.g.,

Myung, 2003). Although their origins differ, they measure the discrepancy between

the empirical data and the ability of a model to reproduce those data. GOF

measures are popular because they are relatively easy to compute and the measures

are versatile, being applicable to many types of models and types of data. Perhaps

most of all, a good fit is an almost irresistible piece of evidence in favor of the

adequacy of amodel. Themodel appears to do just what one wants it to—mimic the

process that generated the data. This reasoning is often taken a step further by

suggesting that the better the fit, the more accurate the model. When comparing

competing models, then, the one that provides the best fit should be preferred.

GOF would be suitable for model evaluation and comparison if it were not for

the fact that data are noisy. As described earlier, a data set contains the regularity

that is presumed to reflect the phenomenon of interest plus noise. GOF does not

distinguish between the two, providing a single measure of a model’s fit to both

(i.e., GOF ¼ fit to regularity þ fit to noise). As this conceptual equation shows, a

good fit can be achieved for the wrong reasons, by fitting noise well instead of the

regularity. In fact, the better a model is at fitting noise, the more likely it will

provide a superior fit than a competing model, possibly resulting in the selection of

a model that in actuality bears little resemblance to the process being modeled.

GOF alone is a poor criterion for model selection because of the potential to yield

misleading information.

This is not to say that GOF should be abandoned. On the contrary, a model’s fit

to data is a crucial piece of information. Data are the only link to the process being

modeled, and a good fit can indicate that the model mimics the process well.

Rather, what is needed is a means of ensuring that a model does not provide a

good fit for the wrong reason.

What allows a model to fit noisy data better than its competitors is that it is the

most complex. Complexity refers to the inherent flexibility of a model that allows it
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to fit diverse data patterns (Myung and Pitt, 1997). By varying the values of its

parameters, a model will produce different data patterns. What distinguishes a

simple model from a complex one is the sensitivity of the model to parameter

variation. For a simple model, parameter variation will produce small and gradual

changes in model performance. For a complex model, small parameter changes can

result in dramatically different data patterns. It is this flexibility in producing a

wide range of data patterns that makes a model complex. For example, the cubic

model y ¼ ax2 þ bx þ c is more complex than the linear model y ¼ ax þ b. As

shown in the next section, model selection methods such as AIC and BIC include

terms that penalize model complexity, thereby neutralizing complexity differences

among models.

Underlying the introduction of these more sophisticated methods is an impor-

tant conceptual shift in the goal of model selection. Instead of choosing the model

that provides the best fit to a single set of data, choose the model that, with its

parameters held constant, provides the best fit to the data if the experiment were

repeated again and again. That is, choose the model that generalizes best to

replications of the same experiment. Across replications, the noise in the data

will change, but the regularity of interest should not. The more noise that the

model captures when fit to the first data set, the poorer its measure of fit will

be when fitting the data in replications of that experiment because the noise will have

changed. If a model captures mostly the regularity, then its fits will be consistently

good across replications. The problem of distinguishing regularity from noise is

solved by focusing on generalizability. A model is of questionable worth if it does

not have good predictive accuracy in the same experimental setting. Generalizability

evaluates exactly this, and it is why many consider generalizability to be the best

criterion on which models should be compared (Grunwald et al., 2005).

The graphs in Fig. 1 summarize the relationship among the three quantitative

criteria of model evaluation and selection: GOF, complexity, and generalizability.

Model complexity is along the x axis and model fit along the y axis. GOF and

generalizability are represented as curves whose performance can be compared as a

function of complexity. The three smaller graphs contain the same data set (dots) and

the fits to these data by increasingly more complex models (lines). The left-most

model inFig. 1 underfits the data.Data are curvilinear, whereas themodel is linear. In

this case, GOF and generalizability produce similar outcomes because the model is

not complex enough to capture the bowed shape of the data. Themodel in themiddle

graph of Fig. 1 is a bitmore complex and does a good job of fitting only the regularity

in the data. Because of this, the GOF and generalizability measures are higher and

also similar.Where the two functions diverge is when themodel ismore complex than

is necessary to capture the main trend. The model in the right-most graph of Fig. 1

captures the experiment-specific noise, fitting every data point perfectly. GOF

rewards this behavior by yielding an even higher fit score, whereas generalizability

does just the opposite, penalizing the model for its excess complexity.

The problem of overfitting is the scourge of GOF. It is easy to see when over-

fitting occurs in Fig. 1, but in practice it is difficult to know when and by how much
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a model overfits a data set, which is why generalizability is the preferred means of

model evaluation and comparison. By using generalizability, we evaluate a model

based on how well it predicts the statistics of future samples from the same

underlying processes that generated an observed data sample.

IV. Model Comparison Methods

This section reviews measures of generalizability currently in use, touching on

their theoretical foundations and discussing the advantages and disadvantages of

their implementation. Readers interested in more detailed presentations are direct-

ed to Myung et al. (2000) and Wagenmakers and Waldorp (2006).

A. Akaike Information Criterion and Bayesian Information Criterion

As illustrated in Fig. 1, good generalizability is achieved by trading off GOF

with model complexity. This idea can be formalized to derive model comparison

criteria. That is, one way of estimating the generalizability of a model is by
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Fig. 1 An illustration of the relationship between GOF and generalizability as a function of model

complexity. The y axis represents any fit index, where a larger value indicates a better fit (e.g., maximum

likelihood). The three smaller graphs provide a concrete example of how fit improves as complexity

increases. In the left graph, the model (line) is not complex enough to match the complexity of data

(dots). The two are well matched in complexity in the middle graph, which is why this occurs at the peak

of the generalizability function. In the right graph, the model is more complex than data, capturing

microvariation due to random error. Reprinted from Pitt and Myung (2002).

516 Jay I. Myung et al.



appropriately discounting the model’s GOF relative to its complexity. In so doing,

the aim is to identify the model that is sufficiently complex to capture the underly-

ing regularities in the data but not unnecessarily complex to capitalize on random

noise in the data, thereby formalizing the principle of Occam’s razor.

The AIC (Akaike, 1973; Bozdogan, 2000), its variation called the second-order

AIC (AICc; Burnham and Anderson, 2002; Sugiura, 1978), and the Bayesian

information criterion (BIC; Schwarz, 1978) exemplify this approach and are

defined as

AIC ¼ �2 lnf ðyjw�Þ þ 2k;

AICc ¼ �2 lnf ðyjw�Þ þ 2kþ 2kðkþ 1Þ
n� k� 1

;

BIC ¼ �2 lnf ðyjw�Þ þ k lnðnÞ;
ð1Þ

where y denotes the observed data vector, ln f(y | w*) is the natural logarithm of the

model’s maximized likelihood calculated at the parameter vector w*, k is the

number of parameters of the model, and n is the sample size. The first term of

each comparison criterion represents a model’s lack of fit measure (i.e., inverse

GOF), with the remaining terms representing the model’s complexity measure.

Combined, they estimate the model’s generalizability such that the lower the

criterion value, the better the model is expected to generalize.

The AIC is derived as an asymptotic (i.e., large sample size) approximation to an

information-theoretic distance between two probability distributions, one repre-

senting the model under consideration and the other representing the ‘‘true’’ model

(i.e., data-generating model). As such, the smaller the AIC value, the closer the

model is to the ‘‘truth.’’ AICc represents a small sample size version of AIC and is

recommended for data with relatively small n with respect to k, say n/k < 40

(Burnham and Anderson, 2002). BIC, which is a Bayesian criterion, as the name

implies, is derived as an asymptotic expression of the minus two log marginal

likelihood, which is described later in this chapter.

The three aforementioned criteria differ from one another in the way model

complexity is conceptualized and measured. The complexity term in AIC depends

on only the number of parameters, k, whereas both AICc and BIC consider the

sample size (n) as well, although in different ways. These two dimensions of a

model are not the only ones relevant to complexity, however. Functional form,

which refers to the way the parameters are entered in a model’s equation, is

another dimension of complexity that can also affect the fitting capability of a

model (Myung and Pitt, 1997). For example, two models, y¼ axbþ e and y¼ axþ
b þ e, with a normal error e of constant variance, are likely to differ in complexity,

despite the fact that they both assume the same number of parameters. For models

such as these, the aforementioned criteria are not recommended because they are

insensitive to the functional form dimension of complexity. Instead, we recom-

mend the use of the comparison methods, described next, which are sensitive to all

three dimensions of complexity.
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B. Cross-Validation and Accumulative Prediction Error

Cross-validation (CV; Browne, 2000; Stone, 1974) and the APE (Dawid, 1984;

Wagenmakers et al., 2006) are sampling-based methods for estimating generaliz-

ability from the data, without relying on explicit, complexity-based penalty terms

as in AIC and BIC. This is done by simulating the data collection and prediction

steps artificially using the observed data in the experiment.

CV and APE are applied by following a three-step procedure: (1) divide the

observed data into two subsamples, the calibration sample, ycal, simulating the

‘‘current’’ observations and the validation sample, yval, simulating ‘‘future’’ obser-

vations; (2) fit the model to ycal and obtain the best-fitting parameter values,

denoted by w*(ycal); and (3) with the parameter values fixed, the model is fitted to

yval. The resulting prediction error is taken as the model’s generalizability estimate.

The two comparison methods differ from each other in how the data are divided

into calibration and validation samples. InCV, each set of n�1 observations in a data

set serve as the calibration sample, with the remaining observation treated as the

validation sample on which the prediction error is calculated. Generalizability is

estimated as the average of n such prediction errors, each calculated according to

the aforementioned three-step procedure. This particularmethod of splitting the data

into calibration and validation samples is known as leave-one-out CV in statistics.

Other methods of splitting data into two subsamples can also be used. For example,

the data can be split into two equal halves or into two subsamples of different sizes.

In the remainder of this chapter, CV refers to the leave-one-out CV procedure.

In contrast to CV, in APE the size of the calibration sample increases successively

by one observation at a time for each calculation of prediction error. To illustrate,

consider a model with k parameters. We would use the first kþ 1 observations as the

calibration sample so as to make the model identifiable, and the (k þ 2)-th observa-

tion as the validation sample, with the remaining observations not being used. The

prediction error for the validation sample is then calculated following the three-step

procedure. This process is then repeated by expanding the calibration sample to

include the (kþ 2)-th observation, with the validation sample now being the (kþ 3)-

th observation, and so on. Generalizability is estimated as the average prediction

error over the (n� k� 1) validation samples. Time series data are naturally arranged

in an ordered list, but for data that have no natural order, APE can be estimated as

the mean over all orders (in theory), or over a few randomly selected orders (in

practice). Figure 2 illustrates how CV and APE are estimated.

Formally, CV and APE are defined as

CV ¼ �
Xn
i¼1

lnf ðyijw�ðy 6¼iÞÞ;

APE ¼ �
Xn
i¼kþ2

lnf ðyijw�ðy1;2;...;i�1ÞÞ:
ð2Þ

In the aforementioned equation for CV, –ln f (yi j w* (y 6¼ i)), is the minus log

likelihood for the validation sample yi evaluated at the best-fitting parameter

values w*(y 6¼ i), obtained from the calibration sample y 6¼ i. The subscript signifies
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‘‘all observations except for the ith observation.’’ APE is defined similarly. Both

methods prescribe that the model with the smallest value of the given criterion

should be preferred.

The attractions of CV and APE are the intuitive appeal of the procedures and

the computational ease of their implementation. Further, unlike AIC and BIC,

both methods consider, albeit implicitly, all three factors that affect model com-

plexity: functional form, number of parameters, and sample size. Accordingly, CV

and APE should perform better than AIC and BIC, in particular when comparing

models with the same number of parameters. Interestingly, theoretical connections

exit between AIC and CV, and BIC and APE. Stone (1977) showed that under

certain regularity conditions, model choice under CV is asymptotically equivalent

to that under AIC. Likewise, Barron et al. (1998) showed that APE is asymptoti-

cally equivalent to BIC.

C. Bayesian Model Selection and Stochastic Complexity

BMS (Kass and Raftery, 1995; Wasserman, 2000) and SC (Grunwald et al.,

2005; Myung et al., 2006; Rissanen, 1996, 2001) are the current state-of-the-art

methods of model comparison. Both methods are rooted in firm theoretical foun-

dations; are nonasymptotic in that they can be used for data of all sample sizes,

small or large; and, finally, are sensitive to all dimensions of complexity. The price

to pay for this generality is computational cost. Implementation of the methods

can be nontrivial because they usually involve evaluating high-dimensional inte-

grals numerically.

PE (yk + 2)

yk + 1 yk + 2... ... yn−1 yny1

PE (yk + 3)

PE (yk + 4)

PE (yn)

n

i = k + 2
APE =∑ PE (yi)

PE (y1)

y2 y3 ... yn−1 yn...y1

PE (y2)

PE (y3)

PE (yn)

n

i = 1
CV =∑  PE (yi)

Fig. 2 The difference between the two sampling-based methods of model comparison, cross-valida-

tion (CV) and accumulative prediction error (APE), is illustrated. Each chain of boxes represents a data

set with each data point represented by a box. The slant-lined box is a validation sample, and plain

boxes with the bold outline represent the calibration sample. Plain boxes with the dotted outline in the

right panel are not being used as part of the calibration or validation sample. The symbol PE(yi), i ¼ 1,

2, . . . n, stands for the prediction error for the ith validation data point. k represents the number of

parameters, and n the sample size.
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BMS and SC are defined as

BMS ¼ � ln
Ð
f ðyjwÞpðwÞdw;

SC ¼ � lnf ðyjw�Þ þ ln
Ð
f ðzjw�ðzÞÞdz: ð3Þ

BMS is defined as the minus logarithm of the marginal likelihood, which is

nothing but the mean likelihood of the data averaged across parameters and

weighted by the parameter prior p(w). The first term of SC is the minus log

maximized likelihood of the observed data y. It is a lack-of-fit measure, as in

AIC. The second term is a complexity measure, with the symbol z denoting the

potential data that could be observed in an experiment, not the actually observed

data. Both methods prescribe that the model that minimizes the given criterion

value is to be chosen.

BMS is related to the Bayes factor, the gold standard of model comparison in

Bayesian statistics, such that the Bayes factor is a ratio of two marginal likelihoods

between a pair of models. BMS does not yield an explicit measure of complexity

but complexity is taken into account implicitly through the integral and thus

avoids overfitting. To see this, an asymptotic expansion of BMS under Jeffrey’s

prior for p(w) yields the following large sample approximation (Balasubramanian,

1997)

BMS � � lnf ðyjw�Þ þ k

2
ln

n

2p

� �
þ ln

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðIðwÞÞ

p
dw; ð4Þ

where I(w) is the Fisher information matrix of sample size 1 (e.g., Schervish, 1995).

The second and third terms on the right-hand side of the expression represent a

complexity measure. It is through the Fisher information in the third term that

BMS reflects the functional form dimension of model complexity. For instance,

the two models mentioned earlier, y ¼ axb þ e and y ¼ ax þ b þ e, would

have different values of the Fisher information, although they both have the

same number of parameters. The Fisher information term is independent of

sample size n, with its relative contribution to that of the second term becoming

negligible for large n. Under this condition, the aforementioned expression reduces

to another asymptotic expression, which is essentially one-half of BIC in Eq. (1).

SC is a formal implementation of the principle of minimum description length

that is rooted in algorithmic coding theory in computer science. According to the

principle, a model is viewed as a code with which data can be compressed, and the

best model is the one that provides maximal compression of the data. The idea

behind this principle is that regularities in data necessarily imply the presence of

statistical redundancy. The model that is best designed to capture the redundancy

will compress the data most efficiently. That is, the data are reexpressed, with the

help of the model, in a coded format that provides a shorter description than when

the data are expressed in an uncompressed format. The SC criterion value in

Eq. (3) represents the overall description length in bits of the maximally com-

pressed data and the model itself, derived for parametric model classes under

certain statistical regularity conditions (Rissanen, 2001).
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The second (complexity) termof SCdeserves special attention because it provides a

unique conceptualization of model complexity. In this formulation, complexity is

defined as the logarithm of the sum of maximized likelihoods that the model yields

collectively for all potential data sets that could be observed in an experiment. This

formalization captures nicely our intuitive notion of complexity. A model that fits a

wide range of data patternswell, actual or hypothetical, should bemore complex than

a model that fits only a few data patterns well, but does poorly otherwise. A serious

drawback of this complexitymeasure is that it can be highly nontrivial to compute the

quantity because it entails numerically integrating the maximized likelihood over the

entire data space. This integration in SC is even more difficult than in BMS because

the data space is generally of much higher dimension than the parameter space.

Interestingly, a large-sample approximation of SC yields Eq. (4) (Rissanen,

1996), which itself is an approximation of BMS. More specifically, under Jeffrey’s

prior, SC and BMS become asymptotically equivalent. Obviously, this equivalence

does not extend to other priors and does not hold if the sample size is not large

enough to justify the asymptotic expression.

V. Model Comparison at Work: Choosing Between Protein
Folding Models

This section applies five model comparison methods to discriminating two

protein-folding models.

In the modern theory of protein folding, the biochemical processes responsible

for the unfolding of helical peptides are of interest to researchers. The Zimm–

Bragg theory provides a general framework under which one can quantify the

helix–coil transition behavior of polymer chains (Zimm and Bragg, 1959). Scholtz

and colleagues (1995) applied the theory ‘‘to examine how the a-helix to random

coil transition depends on urea molarity for a homologous series of peptides’’

(p. 185). The theory predicts that the observed mean residue ellipticity q as a

function of the length of a peptide chain and the urea molarity is given by

q ¼ fHðgH � gCÞ þ gC : ð5Þ
In Eq. (5), fH is the fractional helicity and gH and gC are the mean residue

ellipticities for helix and coil, respectively, defined as

fH ¼ rs

ðs� 1Þ3
nsnþ2 � ðnþ 2Þsnþ1 þ ðnþ 2Þs� n

nð1þ ½rs=ðs� 1Þ2�½snþ1 þ n� ðnþ 1Þs�Þ

0
@

1
A;

gH¼ H0 1� 2:5

n

0
@

1
AþHU ½urea�;

gC ¼ C0 þ CU ½urea�;

ð6Þ
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where r is the helix nucleation parameter, s is the propagation parameter, n is the

number of amide groups in the peptide, H0 and C0 are the ellipticities of the helix

and coil, respectively, at 0� in the absence of urea, and finally, HU and CU are the

coefficients that represent the urea dependency of the ellipticities of the helix and

coil (Greenfield, 2004; Scholtz et al., 1995).

We consider two mathematical models for urea-induced protein denaturation

that determine the urea dependency of the propagation parameter s. One is the

linear extrapolation method model (LEM; Pace and Vanderburg, 1979) and

the other is called the binding-site model (BIND; Pace, 1986). Each expresses the

propagation parameter s in the following form

LEM : lns ¼ lns0 �m½urea�
RT

;

BIND : lns ¼ lns0 � d Inð1þ kð0:9815½urea� � 0:02978½urea�2 þ 0:00308½urea�3Þ;
ð7Þ

where s0 is the s value for the homopolymer in the absence of urea, m is the change

in the Gibbs energy of helix propagation per residue, R¼ 1.987 cal mol�1 K�1, T is

the absolute temperature, d is the parameter characterizing the difference in the

number of binding sites between the coil and helix forms of a residue, and k is the

binding constant for urea.

Both models share four parameters: H0, C0, HU, and CU. LEM has two para-

meters of its own (s0,m), yielding a total of six parameters to be estimated from the

data. BIND has three unique parameters (s0, d, and k). Both models are designed

to predict the mean residue ellipticity denoted q in terms of the chain length n and

the urea molarity [urea]. The helix nucleation parameter r is assumed to be fixed to

the previously determined value of 0.0030 (Scholtz et al., 1991).

Figure 3 shows simulated data (symbols) and best-fit curves for the two models,

LEM (in solid lines) and BIND (in dotted lines). Data were generated from LEM

for a set of parameter values with normal random noise of zero mean and 1

standard deviation added to the ellipticity prediction in Eq. (5)(see the figure

legend for details). Note how closely both models fit the data. By visual inspection,

one cannot tell which of the two models generated the data. As a matter of fact,

BIND, with one extra parameter than LEM, provides a better fit to the data than

LEM (SSE¼ 12.59 vs. 14.83), even though LEM generated the data. This outcome

is an example of the overfitting that can emerge with complex models, as depicted

in Fig. 1. To filter out the noise-capturing effect of overly complex models appro-

priately, thereby putting both models on an equal footing, we need the help of

statistical model comparison methods that neutralize complexity differences.

We conducted a model recovery simulation to demonstrate the relative perfor-

mance of five model comparison methods (AIC, AICc, BIC, CV, and APE) in

choosing between the two models. BMS and SC were not included because of the

difficulty in computing them for these models. A thousand data sets of 27 observa-

tions each were generated from each of the two models, using the same nine points
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of urea molarity (0, 1, 2, . . ., 8) for three different chain lengths of n ¼ 13, 20, and

50. The parameter values used to generate the simulated data were taken from

Scholtz et al. (1995) and were as follows:H0¼ –44,000,C0¼ 4400,HU¼ 320,CU¼
340, s0 ¼ 1.34, m ¼ 23.0 and temperature T ¼ 273.15 for LEM and H0 ¼ –42,500,

C0 ¼ 5090,HU ¼ –620, CU ¼ 280, s0 ¼ 1.39, d ¼ 0.52, k ¼ 0.14 for BIND. Normal

random errors of zero mean and standard deviation of 1 were added to the

ellipticity prediction in Eq. (5).

The five model comparison methods were compared on their ability to recover

the model that generated the data. A good method should be able to identify the

true model (i.e., the one that generated the data) 100% of the time. Deviations from

perfect recovery reveal a bias in the selection method. (The MatLab code that

implements the simulations can be obtained from the first author.)

The simulation results are reported in Table I. Values in the cells represent the

percentage of samples in which a particular model (e.g., LEM) fitted best data sets

generated by one of the models (LEM or BIND). A perfect selection method would

yield values of 100% along the diagonal. The top 2 � 2 matrix shows model

recovery performance under ML, a purely GOF measure. It is included as a

reference against which to compare performance when measures of model com-

plexity are included in the selection method. How much does model recovery
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Fig. 3 Best fits of LEM (solid lines) and BIND (dotted lines) models to data generated from LEM

using the nine points of urea molarity (0,1,2, . . ., 8) for three different chain lengths of n¼ 13 (�), 20 (m),

and 50 (■). Data fitting was done first by deriving model predictions using Eqs. (5)–(7) based on the

parameter values ofH0 ¼�44,000, C0 ¼ 4400,HU ¼ 320, CU ¼ 340, s0 ¼ 1.34, andm¼ 23.0 reported in

Scholtz et al. (1995). See text for further details.
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improve when the number of parameters, sample size, and functional form are

taken into account?

With ML, there is a strong bias toward BIND. The result in the first column of

the matrix shows that BIND was chosen more often than the true data-generating

model, LEM (53% vs. 47%). This bias is not surprising given that BIND, with one

more parameter than LEM, can capture random noise better than LEM. Conse-

quently, BIND tends to be selected more often than LEM under a GOF selection

method such asML, which ignores complexity differences. Results from using AIC

show that when the difference in complexity due to the number of parameters is

taken into account, the bias is largely corrected (19% vs. 81%), and even more so

under AICc and BIC, both of which consider sample size as well (7% vs. 93% and

9% vs. 91%, respectively). When CV and APE were used, which are supposed to be

sensitive to all dimensions of complexity, the results show that the bias was also

corrected, although the recovery rates under these criteria were about equal to or

slightly lower than that under AIC. When the data were generated from BIND

(right column of values), the data-generating model was selected more often than

the competing model under all selection methods, including ML.

To summarize, the aforementioned simulation results demonstrate the importance

of considering model complexity in model comparison. All five model selection

methods performed reasonably well by compensating for differences in complexity

between models, thus identifying the data-generating model. It is interesting to note

that Scholtz and colleagues (1995) evaluated the viability of the same twomodels plus

a third, seven-parameter model, using GOF, and found that all three models

Table I
Model Recovery Performance of Five Model Comparison Methods

Data generated from

Model comparison method Model fitted LEM BIND

ML LEM 47 4

BIND 53 96

AIC LEM 81 16

BIND 19 84

AICc LEM 93 32

BIND 7 68

BIC LEM 91 28

BIND 9 72

CV LEM 77 26

BIND 23 74

APE LEM 75 45

BIND 25 55

Note: The two models, LEM and BIND, are defined in Eq. (7). APE was

estimated after randomly ordering the 27 data points of each data set.
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provided nearly identical fits to their empirical data. Had they compared the models

using one of the selection methods discussed in this chapter, it might have been

possible to obtain a more definitive answer.

We conclude this section with the following cautionary note regarding the

performance of the five selection methods in Table I: The better model recovery

performance of AIC, AICc, and BIC over CV and APE should not be taken as

indicative of how the methods will generally perform in other settings (Myung and

Pitt, 2004). There are very likely other model comparison situations in which the

relative performance of the selection methods reverses.

VI. Conclusions

This chapter began by discussing several issues a modeler should be aware of

when evaluating computational models. They include the notion of model com-

plexity, the triangular relationship among GOF, complexity and generalizability,

and generalizability as the ultimate yardstick of model comparison. It then intro-

duced several model comparison methods that can be used to determine the ‘‘best-

generalizing’’ model among a set of competing models, discussing the advantages

and disadvantages of each method. Finally, the chapter demonstrated the applica-

tion of some of the comparison methods using simulated data for the problem of

choosing between biochemical models of protein folding.

Measures of generalizability are not without their own drawbacks, however.

One is that they can be applied only to statistical models defined as a parametric

family of probability distributions. This restriction leaves one with few options

when wanting to compare nonstatistical models, such as verbal models and com-

puter simulation models. Often times, researchers are interested in testing qualita-

tive (e.g., ordinal) relations in data (e.g., condition A < condition B) and

comparing models on their ability to predict qualitative patterns of data, but not

quantitative ones.

Another limitation of measures of generalizability is that they summarize the

potentially intricate relationships between model and data into a single real num-

ber. After applying CV or BMS, the results can sometimes raise more questions

than answers. For example, what aspects of a model’s formulation make it superi-

or to its competitors? How representative is a particular data pattern of a model’s

performance? If it is typical, the model provides a much more satisfying account of

the process than if the pattern is generated by the model using a small range of

unusual parameter settings. Answers to these questions also contribute to the

evaluation of model quality.

We have begun developing methods to address questions such as these. The

most well-developed method thus far is a global qualitative model analysis tech-

nique dubbed parameter space partitioning (PSP; Pitt et al., 2006, 2007). In PSP, a

model’s parameter space is partitioned into disjoint regions, each of which corre-

sponds to a qualitatively different data pattern. Among other things, one can use
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PSP to identify all data patterns a model can generate by varying its parameter

values. With information such as this in hand, one can learn a great deal about the

relationship between the model and its behavior, including understanding the

reason for the ability or inability of the model to account for empirical data.

In closing, statistical techniques, when applied with discretion, can be useful for

identifying sensible models for further consideration, thereby aiding the scientific

inference process (Myung and Pitt, 1997). We cannot overemphasize the impor-

tance of using nonstatistical criteria such as explanatory adequacy, interpretability,

and plausibility of the models under consideration, although they have yet to be

formalized in quantitative terms and subsequently incorporated into the model

evaluation and comparison methods. Blind reliance on statistical means is a mis-

take. On this point we agree with Browne and Cudeck (1992), who said ‘‘Fit indices

[statistical model evaluation criteria] should not be regarded as a measure of

usefulness of a model. . .they should not be used in a mechanical decision process

for selecting a model. Model selection has to be a subjective process involving the

use of judgement’’ (p. 253).
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