
How do humans learn to categorize objects (e.g., dogs) 
that vary along multiple dimensions (e.g., size, shape, 
color, texture) into psychologically equivalent categories? 
This question has attracted a great deal of interest in cog-
nitive science and has led to diverse conceptualizations 
of the cognitive processes underlying category formation 
and structure. In prototype theories, humans are assumed 
to extract commonalities across instances of a class and 
encode these generalizations in memory (Reed, 1972; 
Smith & Minda, 1998). In exemplar theories, on the other 
hand, humans encode each instance of the class that is en-
countered, thereby preserving much of the detail present 
in the input (Medin & Schaffer, 1978; Nosofsky, 1986).

Given such different theories and the fact that quantitative 
models of each type have been put forth, one might think that 
decisive evidence favoring one position would have been 
generated long ago, but in recent years, the debate in this 
field has actually intensified. One reason for this stems from 
disagreement about the proper quantitative formulation of 
the exemplar model, of which there are two versions—the 
original generalized context model (GCM; Nosofsky, 1986) 
and an elaborated version we refer to as GCMg (Ashby & 
Maddox, 1993; McKinley & Nosofsky, 1995), which in-
cludes an additional response-scaling parameter, γ.1

Smith and Minda (1998, 2002) expressed severe reser-
vations about γ, questioning its validity and arguing that 
it makes GCMg so adept at fitting behavioral data that 
it becomes a “prototype in exemplar clothing” (Smith & 
Minda, 1998, p. 1413). They supported this claim with 

simulation data showing that GCMg can mimic an addi-
tive prototype model quite well. These researchers were 
sufficiently wary of the additional data-fitting power that 
γ adds to GCM that in subsequent studies (Minda & Smith, 
2001, 2002) they compared multiple prototype models 
(PRT, additive and multiplicative versions2; see Minda & 
Smith, 2001) with only the original GCM, to ensure that 
the models were equated in their numbers of parameters.

Nosofsky and colleagues (Nosofsky & Zaki, 2002; Zaki, 
Nosofsky, Stanton, & Cohen, 2003) defended the introduc-
tion of the response-scaling parameter, arguing that, among 
other things, it was necessary to capture the deterministic 
behavior that participants exhibit early in learning, when 
they tend to focus on a single dimension of a stimulus. Prob-
ably most convincing in countering the claims of Smith and 
Minda (1998) are the results of two simulations that showed 
that data generated by PRT were fitted better by PRT than 
by GCMg. If GCMg were in fact equivalent to PRT, then its 
fits should always be comparable with those of PRT.

Although illustrative, the preceding evidence needs to 
be pursued to draw strong conclusions about whether the 
response-scaling parameter does or does not cause GCMg 
to mimic PRT. What is needed is an understanding of just 
how data-fitting performance changes when γ is added to 
GCM, with respect to PRT in particular. In this article, we 
used statistical model selection methods to provide this 
understanding. Analyses were performed that not only 
quantified the extent to which the data-fitting abilities of 
GCM increased when γ was added, but they also, impor-
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where the sum over C is taken over all relevant categories, 
γ is the response-scaling parameter, and θ represents the 
set of model parameters, θ  (w1, . . . , wT21, λ, q) for PRT 
and GCM and θ  (w1, . . . , wT21, λ, γ, q) for GCMg.3

Measuring Model Complexity 
and Discriminability

Quantitative models are evaluated on the basis of their 
fit to data, with a superior fit generally interpreted as an 
indication that the model is a closer approximation to the 
underlying categorization process. The problem with such 
a conclusion is that a good fit can be achieved for other 
reasons, such as extra parameters, which in essence pro-
vide additional flexibility (more degrees of freedom) to 
improve fit. This is exactly the concern Smith and Minda 
(1998) raised about GCMg: γ made the model so flexible 
it could fit a wide range of data patterns, including those 
fit well by PRT. In the fields of statistics and computer 
science, this property of a model is termed complexity and 
refers to the inherent ability of a model to fit data.

Statistical model selection methods have been devel-
oped that penalize models for extra complexity, thereby 
placing them on an equal footing with models having less 
complexity. The most sophisticated of these is the mini-
mum description length (MDL) method (Pitt, Myung, & 
Zhang, 2002; Rissanen, 1996, 2001). It is composed of 
two main parts.4 The first is a goodness-of-fit measure, in 
this case the log maximum likelihood (LML), ln f (x|θ*), 
where θ* represents the parameters that maximize the 
probability f (x|θ) that the model assigns to the observed 
data x. The second is a complexity measure, denoted by G, 
that takes into account the number of free parameters (k), 
the sample size (N ) , and the functional form of the model 
equation through the Fisher information matrix, I(θ). (See 
the Appendix for details on calculating these quantities as 
well as a brief explanation of why complexity is measured 
on an interval scale.)
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Note that the measures of fit and complexity in MDL 
are additive and thus can be computed separately, pro-
viding a straightforward means of answering questions 
concerning γ. By comparing the complexities of the three 
models, we can learn how much the response-scaling pa-
rameter increases the flexibility of GCM and how much 
more complex GCMg may be when compared with PRT.

Model mimicry is a slightly different issue than model 
complexity. In this case, the concern is that if GCMg mim-
ics PRT well, then the two models should be difficult to 
discriminate. We can evaluate whether this is the case by 
performing a model recovery test, in which two models 
first generate large samples of data.5 These same two 
models are then fitted to every data set, generally using 
a measure such as LML, although more sophisticated 
methods like MDL can also be used. If the two models 

tantly, determined whether this increase was in fact due 
to GCMg’s ability to mimic PRT. We begin by reviewing 
the models and describing the quantitative methods used 
to analyze them. This is followed by the application of 
these methods in two experimental designs, chosen for 
their abilities to discriminate the two models.

Categorization Models
For the three models, the probability of deciding that 

the ith stimulus Si belongs to category A, P(A|Si), is 
given by a multinomial probability that is proportional 
to the similarity of stimulus Si to category A. For exem-
plar models, the category similarity is found by summing 
across individual stimulus similarities, whereas for pro-
totype models, a single idealized stimulus SA is used. To 
calculate stimulus similarities, it is assumed that each 
stimulus is mentally represented as a point located in an 
m-dimensional Minkowski space, and the similarity be-
tween any two stimuli is assumed to decrease exponen-
tially with the distance between them. Therefore, the simi-
larity sij between the ith and jth stimuli is given by
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where xit is the coordinate value of Si along dimension t. In 
this equation, wt denotes the proportion of attention applied 
to the tth dimension (ST

t51 wt 5 1), r determines the distance 
metric that applies in the space, and l denotes the steepness 
of the exponential decay (called the specificity parameter).

One methodological issue to keep in mind is that cat-
egorization models can vary across studies, making com-
parisons difficult. However, because one of our goals was 
to evaluate the effects of design differences on model 
discriminability, we held models constant across designs. 
This was done in two ways. First, the metric parameter r 
was fixed at 1 (i.e., city block distance) for all three mod-
els, since the stimulus dimensions are assumed to be per-
ceptually separable (Garner, 1974). Second, a guessing 
parameter, q(0 , q , 1), was introduced to each model. 
The role of this parameter was to assume that, with prob-
ability q, a participant chose a category at random. With 
these changes, the probability that the observed stimulus 
Si belongs to the category A is defined as
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Analysis of the Smith and Minda (1998) design. 
In Smith and Minda’s (1998) Experiment 2, participants 
were presented with 14 six-letter (i.e, T 5 6) nonsense 
words, such as “gafuzi,” and learned to categorize 7 of 
these words as belonging to one category and 7 to another. 
The experiment included two conditions, one that used 
linearly separable category stimuli and another that used 
nonlinearly separable stimuli; for the sake of simplicity, 
however, only stimuli from the latter category structure 
were adopted in the present analyses. Smith and Minda 
(1998) used a standard block-sampling technique, with 
category feedback provided. They analyzed the data from 
10 blocks of 56 trials, each of which comprised 4 repeti-
tions of 14 stimuli, examining each block separately for 
evidence favoring GCM or PRT. Accordingly, the sample 
size in Equation 5 would be N 5 56, obtained by multi-
plying the number of category stimuli (m 5 14) by the 
binomial sample size (n 5 4).

We preface the discussion of the results by noting that 
model complexity is measured on an interval scale. For the 
present discussion, the most important implications of this 
are that there is no absolute zero point (i.e., complexity 
can take on negative values), and ratios of complexity dif-
ferences are meaningfully interpretable, but ratios of com-
plexities are not (Roberts, 1979; Stevens, 1946). In calcu-
lating complexity, we assumed 0 , q , 1, 0 , λ , 20, and 
0 , γ , 10, the same range of values used by Smith and 
Minda (1998). Note that both PRT and GCM have seven 
free parameters consisting of five attention weights (wts), 
one specificity parameter (λ), and one guessing parameter 
(q), whereas GCMg has eight free parameters, including 
the additional response-scaling parameter (γ). The model 
complexities for PRT, GCM, and GCMg are G 5 20.986, 
0.184, and 0.305, respectively, for sample size N 5 56.

To interpret these values properly, they must be ad-
justed for the number of parameters, k, and the functional 
form of the model. For example, for k 5 1 and N 5 56, 
the first term in Equation 5 comes to (1/2)ln(56/2π) 5 
1.09. Thus, we can think of each additional parameter as 
contributing an increase in complexity by this amount.7 
Viewed in this light, the difference in complexity be-
tween GCMg and GCM of 0.12 (0.305 2 0.184 5 0.12) 
indicates that adding the response-scaling parameter γ 
increased the complexity of GCM only slightly, 11% of 
the expected increase due to the difference in number of 
parameters between the two (0.12/1.09 5 0.11). Turning 
to the comparison between GCM and PRT, we note that 
there is a complexity difference of 1.17, despite the fact 
that both have the same number of parameters. Obviously, 
this is due to differences in functional form, which makes 
GCM more complex than PRT by almost one effective 
parameter (1.17/1.09 5 1.07). Similarly, the difference 
of 1.29 between GCMg and PRT [0.305 2 (20.986) 5 
1.29] implies that GCMg is more complex than PRT by 
about one effective parameter (1.29/1.09 5 1.18). GCMg 
is therefore more capable of fitting arbitrary data sets than 
PRT is, so caution is required when comparing fits.

When considering model mimicry, however, it is im-
portant to recognize that GCMg’s extra complexity does 
not necessarily imply that GCMg can mimic PRT. To as-

are discriminable, then each model should fit the data it 
generated better than the competing model does. If GCMg 
mimics PRT, then GCMg should not only fit its own data 
better than PRT would, but it should also fit data gener-
ated by PRT better than PRT itself does. Nosofsky and 
Zaki (2002; Zaki et al., 2003) showed that this was not 
always the case, demonstrating that there are conditions 
in which GCMg does not mimic PRT.

We performed a set of model recovery tests to deter-
mine how discriminable the two models are. In doing so, 
we varied the statistical method used to recover the mod-
els in order to show that the use of advanced model selec-
tion methods can greatly improve model discriminability. 
In these evaluations, LML was compared with MDL and 
another selection method, Akaike information criterion 
(AIC; Akaike, 1973), whose complexity takes into ac-
count only the number of parameters, (k),6

	 AIC 5 22 ⋅ LML + 2k.	 (6) 

Additionally, we varied the sample size to illustrate how 
discriminability improves as sample size increases. How-
ever, the effectiveness of any change in sample size or 
statistical method depends on the experimental design. If 
the design is poor, only marginal gains in discriminabil-
ity might be obtainable via either method. In contrast, the 
proper design can be so decisive in favor of one model that 
there is little need for fancy statistical selection methods 
or large samples. The results from a comprehensive set 
of recovery tests can therefore speak to the quality of an 
experimental design as well.

Complexity and Discriminability of 
Categorization Models

The contribution of γ to model complexity and the abil-
ity of GCMg to mimic PRT were evaluated using two ex-
perimental designs that Nosofsky and Zaki (2002) argued 
differ in model discriminability, namely those used by 
Smith and Minda (1998; Experiment 2) and Nosofsky and 
Zaki (2002; Experiment 3). Both designs employ tradi-
tional category-learning experiments in which participants 
are trained to classify objects into one of two categories, 
with learning evaluated across or after training. The differ-
ence between the designs is that whereas Smith and Minda 
(1998) examined categorization performance using the 
same set of stimuli on which the participants were trained, 
Nosofsky and Zaki made a key change that was intended 
to further differentiate the models: They had participants 
classify additional, never-before-seen objects in a subse-
quent test phase, for which the models made classification 
predictions very different from those for the first training 
phase. If the Nosofsky and Zaki design is indeed more 
powerful, MDL should provide little additional informa-
tion beyond what can be learned using common measures 
of fit (e.g., LML). Should this be the case, the design is 
doing most of the work, making fancy statistical machin-
ery redundant. Changes in experimental design can alter 
model complexity dramatically, but the consequences of 
this for model selection are not easily predictable because, 
as will be seen, complexity does not vary in a uniform or 
constant way, but again, depends on design.
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extent to which they overlap that hints at the mimicry that 
concerned Smith and Minda (1998, 2002): GCMg extends 
across most of the PRT distribution, but the reverse is not 
true.

Despite these concerns, one can see that there is an 
optimal decision point for discriminating the models 
that lies where the distributions intersect (at the abscissa 
of approximately 22). By correcting for differences in 
complexity, the decision boundaries for AIC and MDL 
approach this ideal location. However, the fact that the 
distributions overlap means that no selection method per-
formed perfectly, a result that is also reflected in the errors 
shown in Table 1. In short, GCMg and PRT are in fact 

sess mimicry, we performed a set of model recovery tests. 
We sampled 3,000 data sets from each model and fit both 
PRT and GCMg to all data sets for three binomial sample 
sizes of n 5 4, 20, and 100 (equivalently, N 5 56, 280, 
1,400) using LML, AIC, and MDL.8 The results are shown 
in Table 1. When LML was used as the selection method, 
PRT provided the better fit to its own data 43%–57% of 
the time, with higher recovery rates observed for larger 
sample sizes, as should be the case. Data from GCMg 
were almost always fit better by GCMg, rarely by PRT. 
The use of more powerful selection methods shows that 
the poor recovery rate when the PRT model was used was 
due to the imbalance of complexity in favor of GCMg. 
Model discriminability improved greatly when AIC was 
used (83%–89%) and even more so when MDL was used 
(88%–99%), due to MDL’s additional correction for func-
tional form differences.

A more precise understanding of the discriminability of 
the two models, one that also makes the merits of the vari-
ous selection methods easier to evaluate, is to compare the 
magnitudes by which one model (e.g., PRT) fitted a data 
set better than did the other model (e.g., GCMg). To per-
form this analysis, the difference in LML fits (LMLPRT 2 
LMLGCMg) was calculated for the data generated by PRT.9 
The same was done for the data generated by GCMg, 
creating two distributions of fit difference scores. These 
scores, obtained using Smith and Minda’s (1998) design, 
are plotted in Figure 1A, with the GCMg distribution 
specified by triangles, and the PRT distribution specified 
by crosses.

When PRT fits the data better than GCMg does 
(LMLPRT > LMLGCMg), the data fall to the right of the 
dotted line (located at 0 on the x-axis), which denotes the 
LML-based decision criterion. Negative values indicate 
a better fit by GCMg. Unfortunately, only about half of 
the PRT distribution (43%) falls to the right of the dotted 
line, implying that GCMg provides superior fits to PRT 
data more often than PRT itself does. For the GCMg data, 
GCMg, not surprisingly, almost always (97%) fits the data 
better than does the simpler PRT model. Looking at the 
two distributions together, there is an asymmetry in the 

Table 1 
Model Recovery Rates, in Percentages, of Two Categorization 

Models Under Three Selection Methods for Smith and Minda’s 
(1998) Experimental Design

Data Source

Selection Model n 5 4 n 5 20 n 5 100

Method  Fitted  PRT  GCMg  PRT  GCMg  PRT  GCMg

LML PRT 43   3 45   1 57   1
GCMg 57 97 56 99 43 99

AIC PRT 83 10 86   3 89   1
GCMg 17 90 14 97 11 99

MDL PRT 88 12 96   4 99   2
  GCMg   12  88    4  96    1  98

Note—The value in each cell represents the percentage of samples in 
which the particular model was selected under the given selection method. 
Simulated data were generated by sampling across the entire parameter 
space according to the Jeffreys prior. This way, 3,000 parameter values 
were sampled for each model and binomial sample size (n).
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Figure 1. The inherent discriminability of PRT and GCMg. 
Panel A shows distributions of log maximum likelihood (LML) 
differences in fit the two models provide for simulated data gener-
ated from each model using the Smith and Minda (1998) design. 
Panel B shows similar distributions obtained using the Nosofsky 
and Zaki (2002) design. The binomial sample size n 5 4 was used 
to obtain all four distributions, which were estimated by a kernel-
smoothing method.
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els are highly discriminable in this experimental design. 
Comparison of the recovery results across Tables 1 and 2 
shows the models to be more discriminable in the Nosof-
sky and Zaki (2002) design, as those authors argued.

This improved discriminability is visible in Figure 1B, 
where the LML differences for the PRT and GCMg data are 
plotted. The distributions do not even come close to over-
lapping, clearly showing that the two models are entirely 
discriminable. Absolutely no mimicry is occurring. If this 
is the case, why were PRT data not fully recovered in some 
of the model recovery tests? The locations of the decision 
boundaries reveal why. For LML, the decision boundary is 
located well inside the PRT distribution. Selection errors 
are made when the fit difference is to the left of the bound-
ary. Although selection improves with AIC, it is still prone 
to errors. The AIC criterion’s close proximity to the LML 
criterion is due to the fact that the number of parameters 
contributed comparatively little to model complexity in 
this design. Only when functional form effects are neutral-
ized, using MDL, is a more appropriate criterion found, 
although here, too, one might wonder whether the location 
of the criterion is too far to the left. The optimal location 
for it would appear to be in the region between distribu-
tions, not within the GCMg distribution. As the pattern of 
model recovery data for MDL in Tables 1 and 2 shows, the 
accuracy of MDL increases with sample size. In Figure 1, 
this translates into placement of the criterion in a location 
that improves discrimination. With a binomial sample size 
of n 5 4, some imprecision is to be expected.

Conclusion

The model complexity calculations and the model re-
covery results across two experimental designs provide a 
clear and thorough understanding of how the response-
scaling parameter γ affects GCM performance. Adding 
response scaling to the model does increase its complex-
ity, not just by the addition of an extra degree of freedom 
for the model, but also by changing the way in which those 
degrees of freedom may be harnessed. In some contexts, 
such as the experimental design used by Nosofsky and 
Zaki (2002), the increase in model complexity is enor-

reasonably discriminable in the Smith and Minda (1998, 
Experiment 2) design, but only if a selection method that 
controls for complexity is used. If such a method is not 
used, experimenters run a real risk of favoring the overly 
complex model, particularly when only small (i.e., realis-
tic) samples are available.

Analysis of the Nosofsky and Zaki (2002) design. 
Like Smith and Minda (1998), Nosofsky and Zaki (2002) 
used 14 six-dimensional objects for training in Experi-
ment 3 of their study, but the objects were cartoon bugs 
instead of nonsense words. The critical design change was 
that in the test phase, participants had to classify all 64 
possible stimuli (m 5 64), not just the 14 training items. 
The number of test blocks (i.e., binomial sample size) was 
again 4 (n 5 4).

We estimated the complexities of the three models to be 
G 5 17.26, 11.06, and 44.56, for PRT, GCM, and GCMg, 
respectively (sample size N 5 nm 5 256). These values 
are much larger than those calculated for the Smith and 
Minda (1998) design, even though the models are exactly 
the same in both experiments. One cause of this increase in 
complexity value is due to the contribution of the sample 
size used in the design. Because there were 64 category 
stimuli in the present design, the sample size, N, in Equa-
tion 5 is much greater than the sample size in the Smith 
and Minda (1998) design (N 5 256 vs. N 5 56); thus, the 
value of the first term in Equation 5 increased. Another 
cause for the complexity increase comes from the second, 
functional form term of the complexity measure, which 
can also make a substantial contribution to complexity 
through the Fisher information matrix, I(θ). These differ-
ences clearly illustrate the profound effect experimental 
design can have on model complexity. It is tempting to 
think of model complexity as being constant, but as these 
data show, it is not static but rather depends on many fac-
tors, an important one of which is experimental design 
(see Pitt et al., 2002).

The overall effects of the contributions of functional 
form and number of parameters to model complexity 
greatly increases the complexity of GCMg relative to 
GCM and PRT. In fact, the introduction of the response-
scaling parameter to GCM is now equivalent to adding 
about 31 effective parameters [(44.56 2 11.06)/1.09 5 
30.7]. Similarly, GCMg is substantially more complex 
than PRT, specifically by about 25 effective parameters 
[(57.44 2 17.06)/1.09 5 25.0]. An experimental design 
that forces models to harness their computational power to 
fit data well exposes the extent to which γ can contribute 
to model performance. However, whether this increased 
complexity causes GCMg to mimic PRT to such an extent 
that the two are indiscriminable is another question en-
tirely. The set of model recovery tests performed next was 
intended to answer this question.

The model recovery data are displayed in Table 2. The 
results using LML indicate that PRT provided the better 
fit to its own data 66%, 86%, and 93% of the time for 
binomial sample size n 5 4, 20, and 100, respectively. 
GCMg perfectly recovered its own data across all sample 
sizes. With AIC, recovery improved noticeably, and with 
MDL, it was virtually perfect. Without a doubt, the mod-

Table 2 
Model Recovery Rates, in Percentages, of Two Categorization 

Models Under Three Selection Methods for Nosofsky and Zaki’s 
(2002) Experimental Design

Data Source

Selection Model n 5 4 n 5 20 n 5 100

Method  Fitted  PRT  GCMg  PRT  GCMg  PRT  GCMg

LML PRT   66     0   86     0   93     0
GCMg   34 100   14 100     7   99

AIC PRT   87     0   95     0   98     0
GCMg   13 100     5 100     2 100

MDL PRT 100     1 100     0 100     0
  GCMg       0    99      0  100      0  100

Note—The value in each cell represents the percentage of samples 
in which the particular model was selected under the given selection 
method. Simulated data were generated by sampling across the entire pa-
rameter space according to the Jeffreys prior. This way, 3,000 parameter 
values were sampled for each model and binomial sample size (n).
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mous. This increase in complexity allows GCMg to pro-
vide good fits to PRT data, as illustrated by the fact that 
the PRT distributions in Figure 1 have a sizable amount of 
their mass to the left of the 0 line. As a consequence, sim-
ple measures of fit such as LML perform poorly irrespec-
tive of the experimental design. However, the extent to 
which GCMg can mimic PRT is only partial: The GCMg 
and PRT distributions in Figure 1 are quite distinct, par-
ticularly in the Nosofsky and Zaki design. Accordingly, 
when we switch to statistical methods such as MDL that 
correct for the source of the problem—namely, model 
complexity—the apparent mimicry vanishes.

Additionally, the results of the two analyses show that 
the relationship between model complexity and model 
discriminability is not simple. Intuitively, an increase in 
complexity, which means an increase in data-fitting abil-
ity, should lead to greater mimicry. The current simula-
tions show that this is not the case. If it were, the two 
models should be less discriminable in the Nosofsky and 
Zaki (2002) design than in the Smith and Minda (1998) 
design (since the complexity differences are larger in this 
design), when in fact the opposite is true.

How can complexity and discriminability increase to-
gether? The answer lies in considering the relationship 
of the models to one another and to the data. An increase 
in complexity is unlikely to generate an improvement 
in data-fitting precision across the range of all possible 
data patterns but rather is likely be localized to only a 
few patterns. In fact, a decrease in model discriminability 
will be found only in those cases in which the additional 
complexity increases the model’s (e.g., GCMg’s) ability 
to produce patterns that the competing model (PRT) fits 
well. This could be a very small region of the space of 
all possible data patterns. As for the increase in discrim-
inability, GCMg and PRT are highly discriminable in the 
Nosofsky and Zaki (2002) design precisely because the 
data are fit exceptionally well only by GCMg. In other 
words, the data pattern is one that GCMg can generate but 
that PRT cannot.

An increase in model complexity does not guarantee an 
increase in model mimicry. In fact, additional complexity 
could be just what is needed to discriminate models but 
only if it further differentiates their predictions. If addi-
tional complexity does nothing more than improve fit to 
data that do not discriminate between models, then it is 
unjustified.

Finally, this study shows that statistical model selection 
methods can compensate for weaknesses in experimental 
design. To the extent that a highly informative experimen-
tal design can be found, the less need there is for model se-
lection methods like MDL. In these situations, the differ-
ences in LML fit between models will be so large that even 
though substantial differences in complexity may exist 
between them, the contribution of complexity to the MDL 
value will be insignificant. When the design is weaker, 
reliance on MDL will be greater. In both cases, statistical 
model selection methods should always be used as supple-
mentary tools in decision making and should never be the 
sole arbiter when evaluating competing models.
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may not be generalizable to hybrid models, such as the mixed prototype 
model of Smith and Minda (1998).

4. There are several formulations of MDL. We used Rissanen’s (1996) 
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selection methods, see two special issues of the Journal of Mathemati-
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Wagenmakers & Waldorp, 2006).
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for a particular sample size (e.g., N1), the model’s complexity for any other 
sample size, say N2, is fully determined as GN2 5 GN1 + (k/2) ln(N2/N1), 
where k is the number of model parameters.

9. This method of analyzing the whole distribution of LML differ-
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Notes

1. Navarro (2007) provided an in-depth discussion of the response-
scaling parameter, including three theoretical interpretations one can 
attach to it: at the decision level, category similarity level, and represen-
tational structure level.

2. Only the multiplicative prototype model is evaluated in this article. 
We refer to it as PRT.

3. The results of this investigation do not change qualitatively if the 
parameter q is omitted. Conclusions drawn from this study, however, 

(Continued on next page)
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Appendix

Likelihood Function
The likelihood function f ( x|θ), given the data set x 5 (xA1,xA2, . . . , xAm), in a two-category decision experi-

ment, C 5 A or B, is given by
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In this equation, m is the number of test stimuli, n is the binomial sample size or number of independent binary 
trials, xAi 5 {0,1, . . . , n}, i 5 1, . . . , m, is the observed number of category A decisions out of n trials for the ith 
stimulus Si, and finally P(A|Si, θ) denotes the categorization probability defined in Equation 2.

Fisher Information
The Fisher information matrix of sample size 1 (N 5 1), I(θ), is the expected value of the second partial 

derivatives of the negative log likelihood of sample size 1 (see, e.g., Rissanen, 1996, Equation 7; Schervish, 
1995, pp. 110-115),
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where θu and θv correspond to the uth and vth elements of the model parameter vector θ 5 (θ1, θ2, . . . , θk). Since 
PRT, GCM, and GCMg are all multinomial, a standard result (Su, Myung, & Pitt, 2005) can be used to obtain 
the uvth element of the Fisher information matrix.

Calculation of the Complexity Measure
Calculating the complexity measure G in Equation 5 for the categorization models is reasonably simple in 

principle, if slightly tedious in practice. Calculating the second term of the complexity, involving the integrated 
Fisher information, is a simple task so long as we are able to find I(θ) for a given θ value. Once I(θ) can be 
calculated, all that is needed is the integration det ( )I θ  over the parameter range Θ. For the categorization 
models, these integrals are not very high dimensional, so simple Monte Carlo methods suffice. That is, we use 
the numerical approximation,
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where VΘ denotes the volume of the parameter space, and the θ(i) values are T (510,000, e.g.) independent 
samples from a uniform distribution over Θ.

The Measurement Scale of the Complexity Measure
The complexity measure G in Equation 5 is an interval scale of measurement. To understand why, consider 

that the complexity measure is obtained as an asymptotic approximation to the logarithm of the normalizing 
constant in the normalized maximum likelihood (NML) selection criterion (Rissanen, 2001):
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for large N. The integration on the left-hand side of the equation is carried out over all possible data patterns 
that one could observe in an experiment. Thus the integral ef ( y|θ*)dy represents the sum of all best fits a model 
can provide collectively, and the logarithm of this sum defines model complexity (see Myung, Navarro, & Pitt, 
2006, for a review of NML).

Given that the maximum likelihood f ( y|θ*) is a ratio scale measurement, the integrated volume of maximum 
likelihoods, ef ( y|θ*)dy, is a ratio scale as well. The logarithm of ratio scale measurements satisfies the two key 
properties of the interval scale: rank order and equality of intervals (Roberts, 1979; Stevens, 1946). Conse-
quently, the complexity measure G, which is essentially equal to the logarithm of the integrated volume, is also 
on an interval scale. Furthermore, we note that the LML is an interval scale measure as well and that it is directly 
additive with G, as shown in Equation 3.
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